

CO-Extruded (RPC) Pipe Developed Englneered to perform damaged To some failures despite 1,23e: where "ordinary" PE100 used To installed pipes To installed pipes Trequires pipe whose service life is unaffected: by external damage caused Trequires pipe whose service life is unaffected: by imposed point loads PAS 1075 "Pipes made from polyethylene for AIT": - service lifetime preserved damaged

Comparison of Attributes – RPC about 5 x PE100

- o RPC pipes are superior to PE100 pipes because of PE100-RC layers
- The SCG, notch and point load properties of PE100-RC are superior to PE100 (SANS 4427)

TEST	PE100 - hours	PE100-RC - hours
Notch Pipe Test (NPT)	2 200	11 580
Full Notch Creep Test (FNCT)	1 600	8 552*
Point Load Test (PLT)	2 200	>9 000

*NB: Ductile failure not brittle failure

o Pipes pass PAS 1075 rigorous tests:

FNCT (Full Notch Creep Test ISO 16770)
PLT (Point Load Test Hessel Ingenieurtechnik)
TAT (Thermal Ageing Test DVS 2205-1:19)
PT (Penetration Test DIN 8075)
NPT (Notch Pipe Test ISO 13479)

PE100-RC Material Approval Tests Raw Material Manufacturer – ISO 17025 Laboratory

TEST	REQUIREMENT	STANDARD
Full Notch Creep Test (FNCT)	>8 760 hours (80° C; 4 N/mm²)	ISO 16770
Point Load Test (PLT)	>8 760 hours (80° C; 4 N/mm²)	J. Hessel
Thermal Ageing Test (TAT)	>100 years at 20° Celsius	DVS 2205-1 supp. Sheet 19
Notch Pipe Test (NPT)	>8 760 hours	ISO 13479
Density	≥ 945 kg/m ⁸	ISO 1138/ISO 1872-1
Melt Flow Rate (MFR)	0.2 to 0.4 g/10 minutes	ISO 1133

PAS (Publicly Available Specification) 1075 Pipes made from Polyethylene for AIT (Alternative Installation Techniques)

TEST	REQUIREMENT	RPC RESULT
Full Notch Creep Test (FNCT)	>8 760 hours (80° C; 4 N/mm²)	8 552* hours
Accelerated Creep Test (ACT)	>320 hours (90° C; 4 N/mm²)	926 hours
Point Load Test (PLT)	>8 760 hours (80° C; 4 N/mm²)	>9 000 hours
Thermal Ageing Test (TAT)	>100 years at 20° Celsius	>100 years
Penetration Test (PT)	Test stress = Design Stress (σ)	Test stress > Design Stress (σ)
Notch Pipe Test (NPT)	>8 760 hours	>11 580 hours
Melt Flow Rate (MFR)	0.2 to 0.4 g/10 minutes	0.26 g/10 minutes

PE100-RC Material Quality Assurance Raw Material Manufacturer Verifies Stress Crack Resistance – COA

TEST REQUIREMENT INTERNAL EXTERNAL

Full Notch Creep Test (FNCT) >8 760 hours or ACT procedure (80° C; 4 N/mm²)

Point Load Test (PLT) >8 760 hours (80° C; 4 N/mm²)

Every 3 years

Notch Pipe Test (NPT) >8 760 hours

Staggered 1 to 3 years

TEST REQUIREMENT STANDARD 2NCT (Two Notch Creep Test) >3 300 hours (80° C; 4 N/mm²; 2% Arkol N-100) 110 SDR 11 Smallest and largest wall thickness (e) Point Load Test (PLT) >8 760 hours (80° C; 4 N/mm²; 2% Arkol N-100) J. Hessel Penetration Test (simulates sharp fragment of burst cast iron pipe) Residual wall thickness after 9 000 hours > 50% of original wall thickness DVS 2203-4; Supplementary sheet 3	- Raw Mate	IT Pipe Approval Testin	g Laboratory
(e) Point Load Test (PLT) >8 760 hours (80° C; 4 N/mm²; 2% Arkol N-100) J. Hessel Penetration Test (simulates sharp fragment of Residual wall thickness after 9 000 hours > 50% DVS 2203-4;	TEST	REQUIREMENT	STANDARD
Penetration Test (simulates sharp fragment of Residual wall thickness after 9 000 hours > 50% DVS 2203-4;	2NCT (Two Notch Creep Test)	>3 300 hours (80° C; 4 N/mm²; 2% Arkol N-100)	
	Point Load Test (PLT)	>8 760 hours (80° C; 4 N/mm²; 2% Arkol N-100)	J. Hessel
	Penetration Test (simulates sharp fragment of burst cast iron pipe)		

	Conclusions
o PE100 substantial improvements	- TT techniques requirements exceed improvements
o PAS 1075 standard	- TT techniques specifically engineered pipes
o Pipeline service life	->100 years damage notwithstanding
o Pipeline owner	- investment preserved
o Consulting Engineer	- specifies the specifically engineered pipes
o TT Contractor	- specifically engineered product reduces defect risk
o RPC pipes	- manufactured in South Africa

Improvements PE100 Polymer – σ = MRS/C MINIMUM REQUIRED DESIGN COEFFICIENT STRENGTH (MRS) – (C) POLYMER DESIGNATION ALLOWABLE DESIGN STRESS (σ) – MPa 1st GENERATION - (PE63) 6.3 1.25 5.0 2nd GENERATION – (PE80) 8.0 1.25 6.3 3rd GENERATION - (PE100) 10.0 1.25 8.0 rare

	SLOW CRACK GROWTH: FNCT	[Full Notch Creep Test)
l	External scratches, notches, gouges, cuts	- TT techniques
	Cut specified notch (ISO 16770) plane	- around 4 sides of sample in same
•	Depth of notch (n) 1,6 mm	- 17% <u>+</u> 2% of sample thickness
•	Clamp sample in jaws	- of test apparatus
•	Immerse sample in test tank	- water solution 80° Celsius
•	Water solution	- 2% Arkopal (wetting agent)
•	Apply constant tensile stress	- 4 N/mm² ± 0,02 N/mm²
•	Record	- time to failure
vare	Time to failure	- shall be not < 8,760 hours (1 year)

STRESS CRACK INITIATION: PLT (Point Load Test)

- Point load (rock impingement) no embedment
- · Pressurise sample
- Immerse maximum pressurised sample
- Press 10 mm diameter piston into sample Yield

 wall
- · Time to failure

- creates stress at pipe inner wall
- maximum rated pressure
- in 2% Arkopal solution at 80° Celsius
- displacement sufficient to produce Stress at inne
- shall be not < 8,760 hours (1 year)

STRESS CRACK INITIATION: PLT (Point Load Test)

- Plot PLT and FNCT time to failure
- · Draw LCL (Lower Confidence Limit) Curve
- · Time to thermal ageing
- Draw PLT 8,760 hour line
- Record FNCT time at intersection
- With sample at maximum pressure
- If FNCT not less than 3,300 hours

- log/log graph in hours
- 97.5% LCL (2.5% failure probability)
- 8,760 hours (1 year) at 80° Celsius
- intersect with 97.5% LCL line
- shall not be less than 3,300 hours
- and Yield Stress at point load
- pipe life **not < 100 years** without selected or imported embedment

ARRHENIUS LAW – reaction rate temperature dependence · Svante Arrhenius (1859-1927) Swedish - Nobel Prize winning physicist and chemist · Chemical and physical (creep) processes - overcome energy barrier "activation energy" · Relationship between Rate Constant (k) - Activation energy (E_A) and absolute temp (T) k = const. exp. (- EA / R . T) - R = universal gas constant To extrapolate, insert difference between - test temp. (T_T) and service temp. (T_S) $\Delta T = T_T - T_s$ • Extrapolation Factor (E_F) for pipe service life $E_F = exp. [(E_A . \Delta_T) / R]$ · Correlation between time-to-failure - at test temp. (t₇) and service temp. (t₅) Actual Service Life ts = Er. tr rare

THERMAL AGEING: TAT (Thermal Ageing Test) · Temperature and stress causes ageing - Mechanical creep (Stress) - SCG (Environmental Stress Cracking) - Thermo-oxidative ageing (TAT) · Thermal stability of the pipe - pipe service life under thermal ageing effect • 32 mm OD SDR 11 (PN 16) - PE 100-RC material sample · Temperatures of circulating water - 80° C; 90° C; 100° C; 110° Celsius Overpressure - 1,0 bar (100 kPa) · Activation energy for thermal ageing - rupture times and Arrhenius Law • Thermal ageing at LCL of 100 years at 20° C - extrapolation using Arrhenius Law vare

SLOW CRACK GROWTH: NPT (Notch Pipe Test)

- · Penetration from directional drilling
- Cut 4 longitudinal notches (ISO 13479) sample
- · Remaining wall thickness 0,78e to 0,82e
- · Clamp end caps on sample
- · Immerse sample in test tank
- · Apply constant pressure
- Time to failure

- chert, dolomite, quartz, granite, shale
- equally circumferentially around
- notch 0,22e to 0,18e
- without end load restraint
- 80° Celsius
- 4,6 N/mm²
- shall be **not < 8,760 hours** (1 year)

